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Noise-Enabled Precision Measurements of a Duffing Nanomechanical Resonator
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We report quantitative measurements of the nonlinear response of a radio frequency mechanical
resonator with a very high quality factor. We measure the noise-free transitions between the two basins of
attraction that appear in the nonlinear regime, and find good agreement with theory. We measure the
transition rate response to controlled levels of white noise, and extract the basin activation energy. This
allows us to obtain precise values for the relevant frequencies and the cubic nonlinearity in the Duffing
oscillator, with applications to parametric sensing.

DOI: 10.1103/PhysRevLett.94.156403 PACS numbers: 85.85.+j, 62.25.+g, 62.30.+d
Doubly clamped mechanical resonators have recently
been the subject of much attention due to their ability to
make very high frequency, high quality factor resonators,
with applications in weak force and small mass detection,
frequency stabilization, and possibly quantum computa-
tion [1–14]. The limit for parametric sensing is often set by
the precision with which a resonator parameter, such as the
mass, can be monitored, limited typically by measurement
and intrinsic noise sources. Here we show how one can use
the intrinsic nonlinear response of these resonators, and the
addition of external broadband noise, to significantly im-
prove the measurement precision of two such parameters,
the resonance frequency and the cubic nonlinearity. This
has direct implications for the ultimate sensitivity of such
parametric sensors.

At large drive amplitudes, doubly clamped resonators
exhibit a bistable response quantitatively similar to the
Duffing oscillator [15,16]. The motion in the fundamental
mode of a doubly clamped beam is well approximated by
the Duffing equation, which for a natural resonance fre-
quency �0 and quality factor Q, driven at frequency �, has
the form
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where Y denotes the displacement amplitude of the mid-
point of the beam, M the mass of the beam, B the ampli-
tude of the external driving force, and Bn�t� the stochastic
forcing function due to thermal and external noise
[6,15,16]. This assumes that the beam oscillates in the
mode with natural frequency �0, that the displacement
Y�t� is the only relevant degree of freedom, and that the
equation of motion includes only the third-order nonline-
arity, with strength K. There are a number of systems that
are modeled by the Duffing equation, including analog
circuits [17], a relativistic electron in a magnetic field
[18], and the current-biased Josephson junction [19]. The
present experiment is one of the first quantitative tests of
the theory that describes transitions between stable states
of the Duffing oscillator.

The displacement Y�t� in Eq. (1) can be written [20] as

Y�t� � U1�t� cos��t� �U2�t� sin��t�; (2)

in terms of the two quadrature amplitudes U1;2�t�. For a
high Q system driven at frequency � near �0, the slowly
varying envelope approximation can be used [15,20],
where the functions U1;2�t� are replaced by their slowly
varying averages, u1;2�t�, respectively.

The average functions u1;2�t� satisfy the equations of
motion
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with independent noise functions Bn1�t� and Bn2�t�.
The Duffing oscillator exhibits one stable state for small

drive amplitudes B, while above a critical amplitude Bc a
bifurcation occurs, creating two stable basins of attraction.
One basin corresponds to larger displacement amplitudes,
and is stable for drive frequencies up to an upper critical
frequency �U (� � �=2�), determined by the drive am-
plitude B. The other stable basin has a smaller displace-
ment amplitude, and is stable for frequencies down to a
lower critical frequency �L, also determined by the drive
amplitude. There are three equilibrium points in Eq. (3);
two of these are stable foci, and the third is a metastable
saddle point.

A transition between the two basins occurs in the ab-
sence of noise when the activation energy separating them
is reduced to zero by changing either the drive amplitude or
the drive frequency. In the presence of noise, however, the
Duffing oscillator exhibits stochastic transitions between
the two basins. For weak noise, the transitions are very rare
except near the critical frequencies �L;U, while, as the noise
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power is increased, the separation between the upper and
lower transition frequencies is effectively reduced.

Here we make detailed measurements of the nonlinear
dynamics of a doubly clamped beam, investigating both
the dynamical motion and the change in the interbasin
transition rates due to broadband noise. Our experimental
system comprises a pair of doubly clamped beams of
single-crystal aluminum nitride, with dimensions 3�
0:2� 0:14 �m3, oriented perpendicular to one another
and fabricated together on a chip of single-crystal Si. The
fabrication technique is described elsewhere [21]. The chip
was placed in the vacuum bore of an B � 8 T magnet at
4.2 K, with one beam (the active beam) oriented perpen-
dicular to the field direction, the other (reference) beam
parallel to the field. Magnetomotive actuation and dis-
placement detection was used to drive the active beam
[1], where the parallel orientation of the reference beam
decouples it from the drive force (see Fig. 1). The active
beam had a natural resonance frequency �0 � �0=2� �
92:9 MHz, a quality factor Q � 6750, and a critical drive
power for inducing the hysteretic bifurcation of �61 dBm.
Using the beam resistance of 11 �, this corresponds to a
critical drive force Bc � 580 pN and a midpoint displace-
ment of 18 nm.

Measurements were made with a radio frequency (rf)
bridge [22], as shown in Fig. 1(a). The rf drive signal is
split by a 180� phase splitter, with the two phases passing
through separate stainless coaxial cables of similar con-
struction. The 180� phase-shifted signal is connected to
one end of the reference beam, and the 0� signal connected
to one end of the active beam. The other ends of the two
beams are connected to a third coaxial cable that returns to
room-temperature electronics. The bridge can be balanced
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FIG. 1. (a) Circuit and active and reference beams; dotted
outline encloses cryogenic part of experiment. Box labeled
0; 180 is a 180� phase splitter, and that labeled A;� allows
adjustment of amplitude and phase. Arrow indicates B field
orientation. (b) Amplitude versus frequency for drive from
�68 to �53 dBm, in 1 dBm steps. (c) Phase for the same drive
amplitudes as (b). (d) Hysteresis in u1 � u2 plane, plotted as
i vs q in dimensionless units.
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in both amplitude and phase over the range of frequencies
used in this experiment, and is typically tuned so that the
electrical signal is proportional to the displacement-
induced electromotive force [1].

The signal is the demodulated output of the bridge,
giving the in-phase and out-of-phase quadrature signals
i�t� and q�t�. These are proportional, to within a phase
factor, to the average amplitudes u1;2�t� [1,22]. In
Figs. 1(b)–1(d) we display the responses of the active
beam to a range of drive amplitudes, where the frequency
is swept through the resonance for each amplitude; the
responses are in quantitative agreement with that expected.

In Fig. 2 we compare the measured quadrature ampli-
tudes to numerical solutions of Eq. (3). In Fig. 2(a) we
show the calculated phase-space trajectories, and in 2(b)
and 2(c) the experimentally measured trajectories. In
Figs. 2(d) and 2(e) the time traces are shown for the
switching transitions. The correspondence between is ap-
parent, with the trajectories in Fig. 2(a) showing noise-free
relaxations to both foci, corresponding to the single-focus
transitions measured separately in Figs. 2(b) and 2(c). As
the drive frequency is varied, the stable points follow a
circle on the u1;2 plane, even with the Duffing nonlinearity.
These circles are evident in Fig. 1(d).

We now discuss the noise-induced transitions between
the foci. Thermally activated escape from a single basin of
attraction is a thoroughly studied problem [23,24]. The
escape rate over a barrier EB is given by � � a�Q��0 �
exp��EB=kBT�, determined predominantly by the
Arrhenius factor and less so by the prefactor a�Q�. In our
system, there is a basin of attraction about each of the two
foci found on a Poincaré map of the configuration space.
Instead of a one-dimensional potential well, there is a
quasipotential, with dynamics governed by the noise en-
ergy at each point in the configuration space [25]. The
equivalent activation energy, EA, for transitions between
the foci, is found by integrating the minimum noise energy
over the trajectory.
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FIG. 2. (a) Numerically generated phase-space flow for a drive
force 9 dB above the critical point Bc, and drive frequency
40 kHz above �0=2�. Flow begins near the saddle point and
evolves toward either focus. (b) Experimental phase-space mean
trajectory from focus 1 to focus 2 (8000 averages). (c) Data for
phase-space mean trajectory from focus 2 to focus 1 (8000 aver-
ages). (d),(e) Experimental time traces for the two switching
transitions (8000 averages).
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Transitions were induced by using an external white
noise signal Bn combined with the drive signal B. Typi-
cal noise powers ranged from �130 to �100 dBm=Hz.
The drive was produced by a low noise source, although
with no additional noise, the remnant phase noise still in-
duced transitions. The thermal and mechanical noises asso-
ciated with the finite Q are estimated to be 70 dB below the
source noise, too small to induce measurable transitions.

Transition histograms were measured by applying a
drive signal to the resonator above the critical value, pre-
paring the resonator in one basin of attraction, and moni-
toring the switching transition to the other basin. We
measured histograms of the switching probability per
unit frequency, h���, by sweeping the drive frequency � �
�=2� slowly at a rate s � d�=dt, and recording the drive
frequency at which a transition occurred. The sweep rate
was kept low enough that the resonator was always in
quasiequilibrium. This technique has been used for mea-
suring switching in current-biased Josephson junctions
[26]. The transition rate ���� is extracted from the histo-
gram h��� using ���� � �1�

R
�
0 h��

0�d�0
�1sh���.
In Fig. 3(a) we display a set of histograms h���; higher

noise powers shift the peak switching frequency and also
broaden the distribution. In Fig. 3(b) we show the transition
rates extracted from these histograms, demonstrating the
rapid increase in the transition rate as the noise power is
increased. We then extract the activation energy EA���, by
inverting the thermal activation expression ���� �
�0 exp��EA���=kBTeff
, where the effective temperature
Teff is proportional to the noise power, and the prefactor
�0 is related to the Kramers low-dissipation form [23],
�0 � �0=Q. In this technique, the histograms are only
logarithmically sensitive to �0, so a precise value is not
essential. In Fig. 3(c) we display the activation energy
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FIG. 3. (a) Switching histograms h��� for different noise
powers, with B � �56 dBm, for 1 ! 2 transitions. Noise in-
tensity is increased from bottom to top. (b) Transition rates ����
extracted from switching histograms. (c) Calculated activation
energy EA��� extracted from transition rates and variation in
noise power. The noise power was varied from �127 to
�113 dBm=Hz. Solid curve is fit to expected dependence.
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EA��� extracted from the histograms, showing the expected
decline in the activation energy as the drive frequency
approaches the critical frequency. The distributions shown
in Fig. 3(b) are seen to collapse onto a single curve EA���.
In Fig. 4(a) we show experimentally measured EA���
curves for transitions from focus 1 to 2 and from 2 to 1,
for different drive amplitudes.

We calculated the activation energies numerically [17].
The dynamic solutions to Eq. (1) without noise give the
relaxation from the saddle point to one of the foci. During a
noise-induced transition, the system is excited from a basin
near a focus towards the saddle point, which it crosses and
then relaxes to the other focus, for which there is an infinite
number of trajectories. Given a trajectory, one can calcu-
late the contribution of the noise force using Eq. (1). The
energy transferred to the resonator is found by integrating
the noise power along the trajectory, yielding the effective
activation energy between the foci. The energy transferred
is an actionlike quantity, and the most likely escape trajec-
tory is that with the minimum action. The actionlike in-
tegral S of the system [27] is then

S �
Q

4�0M
2

Z
path

B2
n�t�dt: (4)

The most likely path Y0�t� minimizes S, and travels near
the saddle point. The oscillator evolves from this point to
either focus without contributing to the integral, as this
relaxation does not require a noise term. Only when the
oscillator is evolving against the dissipative flow field,
from a focus toward the saddle point, will it contribute to
the action integral.

We used a numerical minimization of the trajectories
Y�t�, using S as a test function to approach the extremum
Y0�t�. The trajectories were calculated in the rotating
frame, using the relaxation method [28], for different drive
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FIG. 4. (a) Measured activation energy for drive force ranging
from 1 to 7 dB above Bc. (b) Numerically calculated activation
energies between foci 1 and 2. (c) Log-log plot showing EA /
��� �U�

2 dependence near the critical point. (d) �U versus drive
amplitude B=Bc. At large amplitudes the data diverge from the
analytic form.
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FIG. 5. Amplitude hysteresis plots, for no noise power (bot-
tom), with the drive amplitude set at �59 dBm, 2 dB above the
critical point. Noise power was increased by 2 dB for each
succeeding frame.
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frequencies and amplitudes, yielding the results shown in
Fig. 4(b). We find logarithmic agreement between the
measured and calculated energies. The largest uncertainty
is the noise power coupling efficiency, which is difficult to
measure precisely, giving the experimental energy an un-
certainty of about a factor of 2.

Near the critical drive power Bc, on the line of the
kinetic phase transition, where the activation energies for
both transitions are equal, analytic forms indicate the
activation energy should have a quadratic dependence
[20], EA / ��� �c�

2, where �c is the critical frequency
where the energy required for either transition drops to
zero. Our measurements demonstrate that, near the criti-
cal frequency, the dependence of the activation energy
on j�� �Uj is also quadratic, as shown in Figs. 3(c) and
4(a). This allows a determination of �U for a given drive
power; our histograms yield an uncertainty of !�U=�U�
3�10�7. By comparing the observed dependence of �U on
drive power with that obtained from the numerical analy-
sis, shown in Fig. 4(d), we can extract the natural reso-
nance frequency �0 and the coefficient of nonlinearity K.
We find �0 � 92 887 360� 10 Hz and K � �3745� 4� �
1011 N=m3. Note the numerical analysis has a theoretical
uncertainty of /Q�2. Because Q is constant, this system-
atic error does not affect the precision of the measurement.

The frequency measurement represents a relative preci-
sion of !�0=�0 � 1:1� 10�7. In the linear regime, the
resonance frequency can be determined to about one-tenth
the resonance width, �0=Q; for our resonator, this corre-
sponds to !�0=�0 � 10�5. This 100-fold improvement in
frequency resolution has implications for, e.g., mass sens-
ing with mechanical resonators [2,29].

These measurements were made in the small noise limit,
with noise energies much less than the activation energy.
At higher noise powers, the hysteresis can be quenched, by
rapid noise-induced transitions between the two foci, as
15640
shown in Fig. 5: As the noise power is increased, the
hysteresis loop grows smaller, until, at the highest powers,
the switching is no longer hysteretic. In this limit, the
oscillator generates random telegraph signals as it makes
transitions. The spectrum of the telegraph signal is related
to the transition rate.

In conclusion, we have measured the average escape
paths and transition rates between the bistable states of a
nonlinear resonator. These measurements are in good
agreement with numerical simulations. Detailed analysis
allows quantitative measurement of the activation energy
between the foci, and provides a sensitive measurement of
the resonance frequency and the nonlinear parameter.
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